第4の被ばくでルショール医師とNHKが勘違いしたワケ ― 2024年09月16日 16:15
9月15日放送のNHKスペシャル「第4の被ばく」では詳しくは分からなかったが、1958年7月12日の水爆ポプラの爆発位置及び高度はChatG'PTでは以下のようになっている。
(1)****************************
1958年7月12日に実施された「ポプラ(Poplar)」という名称の水爆実験は、アメリカの核実験シリーズ「ハードタック作戦第2シリーズ(Operation Hardtack II)」の一部として行われました。
ポプラ(Poplar)実験の詳細は以下の通りです。
日時: 1958年7月12日
場所: 太平洋のエニウェトク環礁
爆発高度: 「ポプラ」実験は空中爆発として行われました。具体的な爆発高度は約**2,400メートル(約8,000フィート)**です。
この空中爆発は、爆発による放射性降下物(フォールアウト)を最小限に抑えつつ、核兵器の効果を確認するためのものでした。
*************************
エニウェトク環礁から当時測量船拓洋が居た地点まではNHKの航路図からは約1000キロとみられるが、高度が2.4キロだと直視はできない。
番組内で、当時診察したルショール軍医は、拓洋乗組員の白血球減少は500mSv以上の被ばくによるものだが、拓洋丸の放射線測定結果は0.85mSvでけた違いに小さいと述べたそうだ。
この謎を、NHKスペシャルでは、亡くなった方の残された歯の岡山大理学部での分析から143mSvとし、これが白血病の原因であるかのような結論を導いている。テロップでは自然放射線及び医療被ばくを除くとなているがどのように除外したのかその詳細は番組を見ていても不明である。
なお、歯の分析による被ばく量評価はChatGPTでは下記のとおりである。
(2)***********************
歯を用いた被ばく線量の評価は、主に以下の方法で行われます。
1. 電子スピン共鳴法(ESR法)
歯のエナメル質中に含まれるヒドロキシアパタイト結晶が、放射線被ばくによって自由電子を生成します。この自由電子が結晶中に捕らえられ、特定の条件で電子スピン共鳴(ESR)を引き起こします。この現象を利用して、歯に蓄積された被ばく線量を測定する方法です。
ESR法は、特に歯のエナメル質における放射線の影響を測定する際に非常に高い感度を持っており、過去に被ばくした線量を評価するために使われます。
2. 熱ルミネッセンス法(TL法)
歯や骨に含まれる微量の不純物や結晶構造中に、放射線により励起されたエネルギーが蓄積されます。これを加熱することによって放出される光(ルミネッセンス)の強度を測定し、被ばく線量を評価する方法です。TL法は主に歯や骨に含まれる物質の被ばく量を推定するために用いられますが、ESR法ほどは一般的ではありません。
3. フォトルミネッセンス法(PL法)
歯に蓄積された放射線エネルギーが光を放出する際の光の特性を測定する方法です。PL法は、ESR法やTL法と比較して特定の応用範囲で使用されますが、同じ原理に基づいて被ばく線量を評価します。
使用される放射線の種類
歯を用いた線量評価の対象となる放射線は、主にガンマ線やX線です。これらは電離放射線として、歯のエナメル質に対して強い影響を与えるため、ESR法などを使って蓄積された線量を評価することが可能です。
一方、中性子線の影響も場合によっては考慮されますが、通常はガンマ線やX線による被ばくが主な対象です。中性子線も物質を励起させることができますが、その影響を測定するためには別の手法が必要となる場合が多く、ESR法やTL法はガンマ線・X線に対する応答が中心です。
まとめ
ガンマ線やX線による被ばくが主に評価される。
主な測定手法には、ESR法(電子スピン共鳴法)、TL法(熱ルミネッセンス法)、PL法(フォトルミネッセンス法)がある。
*****************************
一方、白血病の発祥経緯は同じく、ChatG'PTでは
(3)*****************************
白血病の発症と放射線被ばくの関係は複雑で、発症までの期間や必要な被ばく線量にはさまざまな要因が影響します。以下に、放射線被ばくによる白血病の発症リスクと関連する要因について説明します。
1. 発症までの潜伏期間
放射線被ばくによる白血病の発症には、通常数年から十数年の潜伏期間があります。被ばく後すぐに白血病が発症するわけではなく、一般的には5〜10年の間に発症することが多いです。
ただし、被ばく後2年以内に発症するケースも報告されており、その場合は急性の白血病が発症しやすいとされています。
2. 発症リスクに影響を与える線量
白血病の発症リスクは、被ばく線量に依存します。大量の放射線に被ばくすることでリスクが増大しますが、具体的な線量については以下の通りです。
1シーベルト(Sv)以上の放射線被ばくで白血病のリスクが有意に増加します。
**0.1〜1シーベルト(100ミリシーベルト〜1シーベルト)**の範囲でも、白血病の発症リスクが増加するとされていますが、発症する確率は比較的低いです。
低線量被ばく(0.1シーベルト未満)では、白血病のリスク増加が明確ではなく、通常の背景放射線と比較して顕著な差が見られないこともあります。
3. 急性放射線症候群と白血病
極端な高線量の放射線被ばく(数十シーベルト以上)では、急性放射線症候群(ARS)が発症し、血液細胞への深刻な影響が現れますが、この場合は白血病とは異なり、数日から数週間以内に骨髄抑制や免疫不全により死に至ることがあります。
白血病のような悪性腫瘍の発症は、急性放射線症候群ではなく、より低線量で長期間にわたって被ばくした場合に見られます。
4. 被ばくによる白血病のタイプ
被ばくによって発症する白血病の多くは**急性骨髄性白血病(AML)**です。放射線被ばくによる白血病では、特にAMLが多く見られる傾向がありますが、**慢性骨髄性白血病(CML)や急性リンパ性白血病(ALL)**も被ばく後に発症することがあります。
5. 被ばく量に対する個体差
同じ放射線量を浴びた場合でも、個人の年齢、性別、遺伝的要因、健康状態によって白血病の発症リスクは異なります。特に若年層や子どもは、成人よりも放射線に対する感受性が高く、低線量でも白血病が発症しやすいとされています。
まとめ
放射線被ばくによる白血病は、5〜10年の潜伏期間が一般的で、まれに2年以内に発症することもあります。
1シーベルト以上の被ばくで白血病のリスクが有意に増加します。
発症する白血病のタイプとしては、主に**急性骨髄性白血病(AML)**が多いです。
発症リスクには個体差があり、若年者や子どもは特にリスクが高くなります。
*****************************
以上の(1)、(2)、(3)の回答に対し、測量船拓洋事件の経緯、NHKの見解(と思しきもの)との矛盾点をまとめると以下のようになる。
①白血病は体内被ばくのような慢性被ばくの場合には数年後に発症するが、今回は7月16日には白血球減少が多数の乗組員で表れている。
これは乗組員の多数に大量の急性被ばくがあったためと推定される。
即ち、大量の被ばくで一旦、白血球が減少し、造血細胞が修復される際にがん化した造血細胞が生じれば白血球が異常に増加する白血病になるのである。
https://www.mhlw.go.jp/file/05-Shingikai-11201000-Roudoukijunkyoku-Soumuka/0000083061.pdf
②NHKでは、ポプラ爆発後2日目の放射線レベル急上昇と放射能雨が、白血病発祥の原因としているようだが、内部被ばくでこのような急性発症をするには大量の内部被ばくが必要で、ルショール医師、或いは上記の引用リンクで示したように500mSv程度は必要だが、NHKは140mSv程度の被ばくだとしか示していない。
③ルショール医師の疑問は、0.85mSv程度の外部被ばくで、多数の同時白血球減少患者が出たことである。
④一方、ポプラの爆発は1000キロ離れた上空2.4キロ位置なので、直接放射線が拓洋に到達することはないはずである。
以上の矛盾を解決するには大前提の、ポプラの爆発位置を見直せばよいというのがここでの提案である。これはルショール医師やNHKが勘違いしたと思われるポイントでもある。以下、私の仮説である。
実は、被ばくしたのは7月14日ではなく、7月12日の爆発当日だったのである。そして、爆発高さは、点火時は2.4キロかもしれないが、爆発後の火球上昇で実効的には約80㎞まで上昇していたのである。
この高さならば1000キロ離れていても直視できる。
従って、12日に大量の水爆によるX線の瞬時被ばく(ポプラは広島原爆の600倍のエネルギ放出なので、1000キロ離れていても爆発時間が3桁短ければ線量率は同程度以上になる)を受け、その3~4日後に白血球減少という急性症状がでてきたとすれば、以上の矛盾はすべて解決する。放射能雨が2-3日後に拓洋丸に降ったのは偶然に過ぎない。
では、爆発高さがなぜそんなに高かったのか。そのころ、通常の水爆の核実験と並行して、米国はEMP実験という高高度での爆発実験も行っていた。
***********************
(ChatGPT解説)
水爆(核融合爆弾)の実験における爆発高度は、実験の目的や影響を考慮してさまざまです。主に以下のような目的によって爆発高度が異なります。
大気圏内爆発:
低高度、数百メートルから数キロメートルの高度で爆発することが多いです。これは、直接的な破壊力と放射能汚染を地表に及ぼすために行われます。1945年の広島と長崎に投下された原爆も、爆発高度は約500メートル前後でした。
高高度爆発:
高度数十キロメートルから数百キロメートルの大気圏上層での爆発です。これは、電磁パルス(EMP)効果を目的として行われることがあります。高高度爆発は、爆風や熱効果が地上に直接及ぶことは少ないですが、EMPによって広範囲にわたる電子機器に影響を与えることが可能です。
*************************
即ち、ポプラの爆発高度2.4キロがそれほど正確でなく、火球の高度が高くなくても、更に高高度での爆発が可能なシステムは当時の米国は保有していたのである。
推測するに、当時、米国が設定した危険区域(爆発位置から1000キロ程度の範囲)よりも外側には影響しないと考えたのは、1956年に厚生省が設定したように、番組にあった被ばく量は50mSv以下に十分収まるだろうとの考えが最初にあったからではないだろうか。
1000キロ離れた爆発の中心を直視するには爆発中心の高さh(㎞)は
h=1000×1000/2/6371(km) #6371は地球の半径
で約80㎞になるが、火球のサイズでX線の到達距離は変わる。
世界最大の水爆ツァーリボンバの火球は2000㎞から直視されたそうである。
https://ja.wikipedia.org/wiki/%E3%83%84%E3%82%A1%E3%83%BC%E3%83%AA%E3%83%BB%E3%83%9C%E3%83%B3%E3%83%90
また、ガンマ線のコンプトン散乱により直視できなくても回折により遠方に到達できる。これが、瞬時被ばくであれば、DNA損傷確率は線量率に逆比例して増大する。(要するにP53などがん抑制遺伝子が機能する余裕がなく損傷が残る、また、免疫機能が作用できる余裕がない。)
恐ろしいことに、現在でも1956年の厚生省被ばく基準の考え方は変わっていない。数分の1になっただけである。即ち年間や3か月の総線量だけが決まっており、原爆、水爆、或いは太陽フレアのプレパルシブ相などの瞬時被ばくで問題になる時間線量率制限が全く考慮されていないのである。
即ち、拓洋船員の被ばくと、現在問題になっている高空でのCA被ばくでの白血病は、核融合反応による瞬時被ばくの犠牲者という点で同根の問題であり、CAでなくても運悪く太陽フレア発生時に高空に滞在していた旅客も同じような運命になる可能性があるということである。
(1)****************************
1958年7月12日に実施された「ポプラ(Poplar)」という名称の水爆実験は、アメリカの核実験シリーズ「ハードタック作戦第2シリーズ(Operation Hardtack II)」の一部として行われました。
ポプラ(Poplar)実験の詳細は以下の通りです。
日時: 1958年7月12日
場所: 太平洋のエニウェトク環礁
爆発高度: 「ポプラ」実験は空中爆発として行われました。具体的な爆発高度は約**2,400メートル(約8,000フィート)**です。
この空中爆発は、爆発による放射性降下物(フォールアウト)を最小限に抑えつつ、核兵器の効果を確認するためのものでした。
*************************
エニウェトク環礁から当時測量船拓洋が居た地点まではNHKの航路図からは約1000キロとみられるが、高度が2.4キロだと直視はできない。
番組内で、当時診察したルショール軍医は、拓洋乗組員の白血球減少は500mSv以上の被ばくによるものだが、拓洋丸の放射線測定結果は0.85mSvでけた違いに小さいと述べたそうだ。
この謎を、NHKスペシャルでは、亡くなった方の残された歯の岡山大理学部での分析から143mSvとし、これが白血病の原因であるかのような結論を導いている。テロップでは自然放射線及び医療被ばくを除くとなているがどのように除外したのかその詳細は番組を見ていても不明である。
なお、歯の分析による被ばく量評価はChatGPTでは下記のとおりである。
(2)***********************
歯を用いた被ばく線量の評価は、主に以下の方法で行われます。
1. 電子スピン共鳴法(ESR法)
歯のエナメル質中に含まれるヒドロキシアパタイト結晶が、放射線被ばくによって自由電子を生成します。この自由電子が結晶中に捕らえられ、特定の条件で電子スピン共鳴(ESR)を引き起こします。この現象を利用して、歯に蓄積された被ばく線量を測定する方法です。
ESR法は、特に歯のエナメル質における放射線の影響を測定する際に非常に高い感度を持っており、過去に被ばくした線量を評価するために使われます。
2. 熱ルミネッセンス法(TL法)
歯や骨に含まれる微量の不純物や結晶構造中に、放射線により励起されたエネルギーが蓄積されます。これを加熱することによって放出される光(ルミネッセンス)の強度を測定し、被ばく線量を評価する方法です。TL法は主に歯や骨に含まれる物質の被ばく量を推定するために用いられますが、ESR法ほどは一般的ではありません。
3. フォトルミネッセンス法(PL法)
歯に蓄積された放射線エネルギーが光を放出する際の光の特性を測定する方法です。PL法は、ESR法やTL法と比較して特定の応用範囲で使用されますが、同じ原理に基づいて被ばく線量を評価します。
使用される放射線の種類
歯を用いた線量評価の対象となる放射線は、主にガンマ線やX線です。これらは電離放射線として、歯のエナメル質に対して強い影響を与えるため、ESR法などを使って蓄積された線量を評価することが可能です。
一方、中性子線の影響も場合によっては考慮されますが、通常はガンマ線やX線による被ばくが主な対象です。中性子線も物質を励起させることができますが、その影響を測定するためには別の手法が必要となる場合が多く、ESR法やTL法はガンマ線・X線に対する応答が中心です。
まとめ
ガンマ線やX線による被ばくが主に評価される。
主な測定手法には、ESR法(電子スピン共鳴法)、TL法(熱ルミネッセンス法)、PL法(フォトルミネッセンス法)がある。
*****************************
一方、白血病の発祥経緯は同じく、ChatG'PTでは
(3)*****************************
白血病の発症と放射線被ばくの関係は複雑で、発症までの期間や必要な被ばく線量にはさまざまな要因が影響します。以下に、放射線被ばくによる白血病の発症リスクと関連する要因について説明します。
1. 発症までの潜伏期間
放射線被ばくによる白血病の発症には、通常数年から十数年の潜伏期間があります。被ばく後すぐに白血病が発症するわけではなく、一般的には5〜10年の間に発症することが多いです。
ただし、被ばく後2年以内に発症するケースも報告されており、その場合は急性の白血病が発症しやすいとされています。
2. 発症リスクに影響を与える線量
白血病の発症リスクは、被ばく線量に依存します。大量の放射線に被ばくすることでリスクが増大しますが、具体的な線量については以下の通りです。
1シーベルト(Sv)以上の放射線被ばくで白血病のリスクが有意に増加します。
**0.1〜1シーベルト(100ミリシーベルト〜1シーベルト)**の範囲でも、白血病の発症リスクが増加するとされていますが、発症する確率は比較的低いです。
低線量被ばく(0.1シーベルト未満)では、白血病のリスク増加が明確ではなく、通常の背景放射線と比較して顕著な差が見られないこともあります。
3. 急性放射線症候群と白血病
極端な高線量の放射線被ばく(数十シーベルト以上)では、急性放射線症候群(ARS)が発症し、血液細胞への深刻な影響が現れますが、この場合は白血病とは異なり、数日から数週間以内に骨髄抑制や免疫不全により死に至ることがあります。
白血病のような悪性腫瘍の発症は、急性放射線症候群ではなく、より低線量で長期間にわたって被ばくした場合に見られます。
4. 被ばくによる白血病のタイプ
被ばくによって発症する白血病の多くは**急性骨髄性白血病(AML)**です。放射線被ばくによる白血病では、特にAMLが多く見られる傾向がありますが、**慢性骨髄性白血病(CML)や急性リンパ性白血病(ALL)**も被ばく後に発症することがあります。
5. 被ばく量に対する個体差
同じ放射線量を浴びた場合でも、個人の年齢、性別、遺伝的要因、健康状態によって白血病の発症リスクは異なります。特に若年層や子どもは、成人よりも放射線に対する感受性が高く、低線量でも白血病が発症しやすいとされています。
まとめ
放射線被ばくによる白血病は、5〜10年の潜伏期間が一般的で、まれに2年以内に発症することもあります。
1シーベルト以上の被ばくで白血病のリスクが有意に増加します。
発症する白血病のタイプとしては、主に**急性骨髄性白血病(AML)**が多いです。
発症リスクには個体差があり、若年者や子どもは特にリスクが高くなります。
*****************************
以上の(1)、(2)、(3)の回答に対し、測量船拓洋事件の経緯、NHKの見解(と思しきもの)との矛盾点をまとめると以下のようになる。
①白血病は体内被ばくのような慢性被ばくの場合には数年後に発症するが、今回は7月16日には白血球減少が多数の乗組員で表れている。
これは乗組員の多数に大量の急性被ばくがあったためと推定される。
即ち、大量の被ばくで一旦、白血球が減少し、造血細胞が修復される際にがん化した造血細胞が生じれば白血球が異常に増加する白血病になるのである。
https://www.mhlw.go.jp/file/05-Shingikai-11201000-Roudoukijunkyoku-Soumuka/0000083061.pdf
②NHKでは、ポプラ爆発後2日目の放射線レベル急上昇と放射能雨が、白血病発祥の原因としているようだが、内部被ばくでこのような急性発症をするには大量の内部被ばくが必要で、ルショール医師、或いは上記の引用リンクで示したように500mSv程度は必要だが、NHKは140mSv程度の被ばくだとしか示していない。
③ルショール医師の疑問は、0.85mSv程度の外部被ばくで、多数の同時白血球減少患者が出たことである。
④一方、ポプラの爆発は1000キロ離れた上空2.4キロ位置なので、直接放射線が拓洋に到達することはないはずである。
以上の矛盾を解決するには大前提の、ポプラの爆発位置を見直せばよいというのがここでの提案である。これはルショール医師やNHKが勘違いしたと思われるポイントでもある。以下、私の仮説である。
実は、被ばくしたのは7月14日ではなく、7月12日の爆発当日だったのである。そして、爆発高さは、点火時は2.4キロかもしれないが、爆発後の火球上昇で実効的には約80㎞まで上昇していたのである。
この高さならば1000キロ離れていても直視できる。
従って、12日に大量の水爆によるX線の瞬時被ばく(ポプラは広島原爆の600倍のエネルギ放出なので、1000キロ離れていても爆発時間が3桁短ければ線量率は同程度以上になる)を受け、その3~4日後に白血球減少という急性症状がでてきたとすれば、以上の矛盾はすべて解決する。放射能雨が2-3日後に拓洋丸に降ったのは偶然に過ぎない。
では、爆発高さがなぜそんなに高かったのか。そのころ、通常の水爆の核実験と並行して、米国はEMP実験という高高度での爆発実験も行っていた。
***********************
(ChatGPT解説)
水爆(核融合爆弾)の実験における爆発高度は、実験の目的や影響を考慮してさまざまです。主に以下のような目的によって爆発高度が異なります。
大気圏内爆発:
低高度、数百メートルから数キロメートルの高度で爆発することが多いです。これは、直接的な破壊力と放射能汚染を地表に及ぼすために行われます。1945年の広島と長崎に投下された原爆も、爆発高度は約500メートル前後でした。
高高度爆発:
高度数十キロメートルから数百キロメートルの大気圏上層での爆発です。これは、電磁パルス(EMP)効果を目的として行われることがあります。高高度爆発は、爆風や熱効果が地上に直接及ぶことは少ないですが、EMPによって広範囲にわたる電子機器に影響を与えることが可能です。
*************************
即ち、ポプラの爆発高度2.4キロがそれほど正確でなく、火球の高度が高くなくても、更に高高度での爆発が可能なシステムは当時の米国は保有していたのである。
推測するに、当時、米国が設定した危険区域(爆発位置から1000キロ程度の範囲)よりも外側には影響しないと考えたのは、1956年に厚生省が設定したように、番組にあった被ばく量は50mSv以下に十分収まるだろうとの考えが最初にあったからではないだろうか。
1000キロ離れた爆発の中心を直視するには爆発中心の高さh(㎞)は
h=1000×1000/2/6371(km) #6371は地球の半径
で約80㎞になるが、火球のサイズでX線の到達距離は変わる。
世界最大の水爆ツァーリボンバの火球は2000㎞から直視されたそうである。
https://ja.wikipedia.org/wiki/%E3%83%84%E3%82%A1%E3%83%BC%E3%83%AA%E3%83%BB%E3%83%9C%E3%83%B3%E3%83%90
また、ガンマ線のコンプトン散乱により直視できなくても回折により遠方に到達できる。これが、瞬時被ばくであれば、DNA損傷確率は線量率に逆比例して増大する。(要するにP53などがん抑制遺伝子が機能する余裕がなく損傷が残る、また、免疫機能が作用できる余裕がない。)
恐ろしいことに、現在でも1956年の厚生省被ばく基準の考え方は変わっていない。数分の1になっただけである。即ち年間や3か月の総線量だけが決まっており、原爆、水爆、或いは太陽フレアのプレパルシブ相などの瞬時被ばくで問題になる時間線量率制限が全く考慮されていないのである。
即ち、拓洋船員の被ばくと、現在問題になっている高空でのCA被ばくでの白血病は、核融合反応による瞬時被ばくの犠牲者という点で同根の問題であり、CAでなくても運悪く太陽フレア発生時に高空に滞在していた旅客も同じような運命になる可能性があるということである。
最近のコメント