WIN-10を10月まで使用できるようにする裏技2025年01月11日 05:01

 最近、パソコンを立ち上げるとWIN-11への強制移行をスケジュールする画面がでて、WIN-10の継続使用ができないようになった。

 これを回避し、WIN-10を10月まで継続使用できるようにする方法が分かった。パソコンのヘビーユーザー用である。

(0)WIN-11以降推奨画面が出た段階でCt+Al+Delの同時押しをし、ログオフする。
(1)ネットを含むすべての接続機器を外す。
(2)電源ボタンを押し、ログインする。
(3)それでもWIN-11への移行スケジュール画面が表示される。
(4)C+A+Delを押す。
(5)WIN-11への移行スケジュール画面が出るが、今度は下にWIN-10を維持するという表示が現れる。
(6)このWIN-10を維持するをクリックすればWIN-10が起動する。

なお、この記事でマイクロソフトが再度修正プログラムを作成する可能性があるので、WIN-10の再起動は今後9月までは行わないようにするのが良いかもしれない。10月以降は諦めてWIN-11を使用するしかないかもしれない。

他には基本的な設定変更としてローカルアカウントを使えばマイクロソフトからの干渉は途絶える。


Microsoftへのログインを切る方法

ChatGPT

Microsoftへのログインを切る方法は、具体的に何を指しているかによりますが、一般的な方法を以下に示します。
1. MicrosoftアカウントからPCのリンクを解除する

Windows PCでMicrosoftアカウントを利用している場合、ローカルアカウントに切り替えることで、Microsoftアカウントのログインを切ることができます。
手順:

設定を開く
「Windowsキー + I」を押します。
アカウント > アカウント情報を選択。
「ローカルアカウントに切り替える」を選択。
必要な情報(新しいローカルアカウントの名前やパスワード)を入力し、設定を完了します。

温泉を取るか地熱発電を取るか―理想の発電法2025年01月11日 09:40

日本海側は大雪で苦難の連続である。

 これも地球温暖化の影響ではあるが、日本としての理想的な発電方法は何か。下記の現状技術でのChatGPTの回答が一応信用できるとした場合、地熱発電らしいが、温泉業界との調整は可能だろうか。

量的には現在の地熱発電は0.3%と無視できるレベルだが、下記のChatGPT回答ではポテンシャルでもこの4倍程度でしかない。大幅増加は困難だろう。この数値はChatGPTでも信用はできそうだ。

新たなエネルギー貯蔵技術の進展を待つしかないだろう。
 最新のエネルギー貯蔵技術、超電導を利用した二酸化炭素を出さないSMESでも100MWで利用時間は1時間レベルである。

電力の安定供給は地球温暖化を招き、それが日本の異常気象を呼び起こし、米国では山火事などで更に二酸化炭素の発生量を増加する負のスパイラルに入っていきつつある。

ChatGPT:
再生可能エネルギーを最大限活用し、エネルギー貯蔵技術や安定供給源と組み合わせることで、気候変動対策として最適なエネルギーミックスを構築するのが理想的だとは思いますが、エネルギー貯蔵技術はほとんど実用化できていません。日本の選択肢はなんでしょうか。

ChatGPT

日本におけるエネルギーミックスの現状を踏まえ、エネルギー貯蔵技術が十分に実用化されていない状況では、以下の選択肢が現実的かつ効果的と考えられます。
1. 再生可能エネルギーの最大限活用

日本は地形や気候の特性を活かして、地域ごとに適した再生可能エネルギーを導入する余地があります。ただし、不安定な発電量を補うためのバックアップが必要です。
適用可能な再生可能エネルギー

地熱発電
日本は世界有数の地熱資源を有しており、天候や時間に左右されない安定した発電が可能です。
→ 課題: 開発までの時間とコスト、温泉業界との調整。

小規模水力発電
地形を活かした小規模水力発電(マイクロ水力)は安定供給が可能で、日本全国に設置余地があります。
→ 課題: 初期投資と適切な立地選定。

洋上風力発電
日本の広い海域を活用した洋上風力は、大きな発電ポテンシャルを持ちます。特に浮体式洋上風力は深海エリアにも設置可能です。
→ 課題: 建設コストと送電網整備。

2. 安定供給源との組み合わせ

再生可能エネルギーの変動性を補うためには、安定供給が可能な電源を併用する必要があります。
主な選択肢

原子力発電
原子力発電はCO₂排出がゼロで、再生可能エネルギーと相互補完が可能です。日本は既存の原発設備を持ち、再稼働が進行中ですが、安全性への懸念が課題です。
→ 選択肢としては、廃炉計画を見直しつつ、安全性を最優先に検討。

天然ガス発電(LNG)
天然ガス発電は石炭よりもCO₂排出が少なく、バックアップ電源として重要です。ただし、化石燃料依存の低減を目指す上では中期的な選択肢といえます。
→ 再生可能エネルギーの割合が増えるまでの橋渡し役。

バイオマス発電
木材や廃棄物を燃料とするバイオマス発電はCO₂排出が相殺されるとみなされます。ただし、持続可能な供給源の確保が重要です。
→ 小規模設備で地域エネルギーの自給率向上に貢献可能。

3. スマートな需要管理

需要応答(Demand Response)
電力需要のピークを抑えるため、企業や家庭の電力使用を柔軟に調整する仕組みを導入します。

省エネ技術の普及
効率的な家電や設備の導入、断熱性能の向上により、電力消費量そのものを削減します。

分散型エネルギーシステム
地域ごとに小規模な発電設備(太陽光、マイクロ水力)を設け、送電ロスを削減します。

4. 政策と技術革新の推進

送電網の整備
再生可能エネルギーの発電地点から消費地点への送電網を整備し、地域間の需給バランスを調整します。

技術開発の加速
エネルギー貯蔵技術がまだ未成熟な状況では、政府主導で研究開発を加速させ、中長期的に実用化を目指す必要があります。

日本における現実的な短期~中期のエネルギーミックス

再生可能エネルギー(太陽光、風力、水力、地熱)を可能な限り最大化。
原子力発電を安全に再稼働させ、安定供給源として利用。
天然ガス発電をバックアップとして適宜利用。
バイオマス発電や分散型エネルギーを地域特性に応じて導入。
需要管理や省エネ政策を徹底し、電力消費を抑制。

結論

エネルギー貯蔵技術が未成熟な現在の日本では、再生可能エネルギーを最大限導入しつつ、原子力発電や天然ガス発電などの安定した電源を組み合わせることが現実的な選択肢です。並行して、エネルギー効率化や技術開発を進めることで、将来的により持続可能なエネルギーシステムを構築できます。


追加質問
地熱や水力は日本では開発しつくされていませんか

ChatGPTの回答

地熱や水力発電は日本では一定程度開発されていますが、「完全に開発し尽くされた」とは言い切れません。以下に、それぞれの状況と今後の可能性について説明します。
1. 地熱発電
現状

開発の状況:
日本は世界第3位の地熱資源大国ですが、その利用率は10%未満にとどまっています。現状、日本全国に設置された地熱発電所の合計出力は約600 MWで、ポテンシャル(2,300 MW以上と推定される)に比べて低い状態です。

制約と課題:
温泉業界との利害対立: 地熱発電の開発が温泉資源に影響を与える懸念から、地域住民や温泉事業者が反対する場合があります。
開発コストと期間: 地熱発電所の建設には膨大な初期投資が必要で、事業化には10年以上かかることもあります。
技術的課題: 有効活用には地熱貯留層を正確に評価する技術や効率的な採熱技術が求められます。

将来の可能性

未開発地域(特に火山帯周辺)での調査と小規模地熱発電の導入により、さらなる開発余地があります。
低温地熱(地中熱)を利用した「バイナリー発電」技術は、既存の地熱発電では利用できない地域にも適用可能です。

2. 水力発電
現状

開発の状況:
日本では大規模水力発電はすでに多くの地点で開発されており、総発電量の約8~9%を占めています。しかし、未開発の小規模水力発電(マイクロ水力)のポテンシャルは依然として大きいです。

制約と課題:
環境への影響: 大規模ダム建設は生態系への影響や地域住民の移転問題を伴うため、新規建設は困難です。
適切な立地の不足: 地形的な条件から、さらなる大規模水力の開発余地は限られています。
老朽化施設の更新: 既存のダムや発電設備の老朽化が進んでおり、効率改善のための設備更新が必要です。

将来の可能性

小規模水力発電の推進: 河川や農業用水路、用水路を活用したマイクロ水力発電は、未利用のエネルギー資源として期待されています。
既存ダムの活用強化: すでにあるダムに発電設備を追加する「ダム再活用」により、発電量を増加させる取り組みも可能です。
揚水発電の最適化: エネルギー貯蔵機能を持つ揚水発電の利用効率を改善することで、既存の水力発電のポテンシャルを高めることができます。

結論

地熱発電は未開発の資源が多く、特にバイナリー発電や小規模地熱発電の導入により成長の余地があります。
水力発電は大規模開発の余地は限られますが、小規模水力発電や既存ダムの活用でポテンシャルを引き出せます。

これらの開発を進めるには、地域住民との合意形成、技術開発、政策支援が不可欠です。日本ではこうした未利用の再生可能エネルギー資源をさらに掘り起こすことが、現実的かつ効果的なエネルギーミックスの一環となります。


追加質問(2)
地熱発電も放射能を放出すると聞きましたが

ChatGPT

地熱発電における放射能の問題については、確かに一部の地域で放射性物質が関わる可能性があるため、注意が必要です。地熱発電に関連する放射能について、以下の点を説明します。
地熱発電と放射能の関係

地熱発電所で放射性物質が関わる場合
地熱発電のプロセスで温泉水や地中から抽出される蒸気には、微量の放射性物質(例えばラドンやウラン、トリウムなど)が含まれていることがあります。これらは自然に存在する物質で、地熱貯留層の深さや地質条件によって含まれる量が異なります。

放射能が発生するメカニズム
地熱発電のために使用される地下水や蒸気は、地中で自然に発生する放射性元素を取り込んでいる可能性があります。これらの元素は、通常は地下で高温高圧の状態にあるため、地熱発電所で抽出される際に一部が地表に持ち上げられることになります。

放射能の影響

放射線量の管理
地熱発電所では、採取された蒸気や水に含まれる放射性物質の処理方法が厳格に管理されています。放射線量は極めて低く、通常は安全基準内に収められています。例えば、地熱発電所の施設内で放射線モニタリングが行われ、もし放射線量が基準を超える場合には適切な処理が行われます。

環境への影響
放射性物質は、地熱発電の施設内で十分に管理されているため、環境や周囲の住民への影響は極めて少ないとされています。ただし、放射性物質が地表に出てくる場合、空気や水の汚染を避けるために適切な処理と管理が求められます。

他のエネルギー源との比較

地熱発電における放射能の問題は、他のエネルギー源と比較しても少ないリスクです。例えば、原子力発電では大量の放射性廃棄物が生じるのに対し、地熱発電は放射線量が極めて低く、放射性廃棄物の管理も比較的簡便です。

まとめ

地熱発電には放射性物質が含まれている場合がありますが、その放射線量は極めて低く、適切に管理されています。原子力発電と比較してもリスクは少ないため、適切な管理のもとでは、安全で持続可能なエネルギー源として有望です。