瞬時少量暴露と長期少量暴露の違い2025年09月06日 08:45

 暴露とはある外部環境に対し、生体がさらされた場合に影響されることをいう。

 その外部環境は何でもよいが、ここでは飲食物と放射線を取り上げる。

 飲食物の中には薬も含まれる。医食同源ともいうように、体内に摂取するあらゆる物質は飲食物である。

 一般に薬は、摂取間隔に厳密な時間間隔を設定し、一度に大量摂取しないように制限されている。これは、たとえ健康に良いといわれる飲食物であっても、瞬時に大量摂取することで悪影響を及ぼすことがあるためである。

 わかりやすい例でいえば、醬油を一度に2リットル飲むと、死亡することがある。酒の一気飲みと同じである。しかし、醤油も毎日少量摂取することで、健康を維持できる。

 紫外線はどうか。紫外線は適度に毎日浴びることで、ビタミンDが体内に生成され、健康維持に役立つが、紫外線発生器で強力な紫外線を浴びれば瞬時であってもがん発生リスクは上昇する。

 では放射線はどうか。これも紫外線や飲食物と同様なのではないだろうか。
 広島・長崎の被ばく者のがん発生リスクはある被ばく線量以上では明らかに増加している。
 原爆被ばくは瞬時(1マイクロ秒以下)の被ばくである。爆発時間は放射線影響研究所の線源評価報告書DS02に示された値である。

 瞬時被ばくの例としては、年に数回起こる太陽フレアの発生時の瞬時X線被ばくがある。この瞬時被ばくは光速で太陽フレア発生後地球上空に到達し、宇宙飛行士はX線被ばくを受ける。(谷口義明「太陽と太陽系の科学」(放送大学出版会)p.32)

一方、空気によるX線の減衰は減衰係数μと透過する距離dの積の指数関数として表せる。

 I=Io×exp(-μ・d)

μは空気の全吸収係数で約1.08㎝2/g(プライス、西口監修、関野訳、「放射線計測」、(コロナ社)、p.29)であり、密度を乗じることで単位長さ当たりの減衰係数に出来る。

各コードの空気密度から減衰係数を単位計算して求めると

高度      密度 ρ (kg/m3) μ (/cm)
Sea level (0 km)    1.225    2.21E-4
10 km (ジェット巡航高度) 0.4135   7.45E-5
100km 1.0E-7 1.80E-16
200km             2.0E-9        3.6E-8
400 km (ISS付近)  1.0E-12   1.80E-11

となる。ここでE-4は10のマイナス4乗を示す。

 透過中の平均密度をその平均高さでの密度とし、これを上式を用いて各位置間の減衰を求めると、
ISS(国際宇宙ステーション)でのIをIoとすると
I(10㎞)≒Io
I(海水面)=I(10㎞)*3.57E-71

となり、ISS高度とジェット巡航高度では差は殆どない。
一方、海面レベルでのジェット巡航高度に対する比率は3.57E-71倍 となり、大きく減衰するのである。

 大気圧は地表で1kg/cm2だから鉛の比重を10g/cm3とすると空気が鉛厚さで1m程度の遮へいと同等の効果となる。

 これが8月25日の記事で書いた女性客室乗務員(CA)のがん発生率が一般人(海面レベルで殆どを過ごす女性)の3倍程度(下記サイト)になる理由だと考えられる。

https://pubmed.ncbi.nlm.nih.gov/29940975/

しかし、瞬間被ばくはCAや頻回高空旅行客だけの問題でも、被ばく者だけの問題でもない。特に日本人は医療被ばくで瞬間被ばくを受ける機会が多い。

 それもX線撮影が多い。CTやがん治療は瞬間ではなく、数分から数時間かけた被ばくだが、X線撮影だけは数μ秒の瞬間被ばくである。

 もちろん、医療での被ばく量を低減する努力は行われているし、総線量に対する制限は満足している。

 しかしそれは年間総線量に対する制限値である。瞬間被ばくはそれでは規制対象にならない単位時間当たりの被ばく線量である。 年間総線量制限は満足していながら、数マイクロ秒で被ばくする高線量率被ばくなのである。現在の国際放射線委員会(ICRP)勧告による法規制には線量率に対する規制条件はない。即ち、海外旅行者や頻回X線撮影を受ける人々に対する瞬時被ばくによるがん発生リスクの防護措置はなされていない。
 一方、福島事故などの長時間被ばく(年間)被ばくに対する基準は厳しく存在している。これが放射線被ばく基準の矛盾した現状であり、21世紀を生きる我々、即ち航空機利用や医療被ばくで瞬間被ばくを受ける我々にとって、無益な規制を強いていていることになる。

 なぜなら、福島事故のような年間数百mシーベルトレベルの被ばくには人類の歴史の中で免疫が出来ている。P53など数十のDNA修復遺伝子が知られている。

 しかし、DNA修復は細胞内の化学反応であり、時間がかかる。瞬間的に大量に被ばくを受けると免疫機能が間に合わない。

 原爆も上空での太陽フレア被ばくもX線撮影も20世紀になって初めて人類が経験する被ばく形態なので、免疫がないということである。

金(キン)の作り方2025年09月28日 05:25

どんな技術も自然現象をまねたり利用したりしているものである。

金の製造方法も同じである。

現在地球上にある金はどうしてできたのか。

宇宙論テキストによれば、現在の太陽の数世代前の恒星が超新星爆発を起こし、その生成物の一部が金となって地球上に存在している。

超新星とは恒星が核融合した燃え殻である。中心に水素が核融合を繰り返して生じた鉄が集まり周辺は水素で構成されるが、自重でつぶれて大爆発し、鉄以上の重たいウランや金などの重い核種が生成される。その過程は複雑だが、鉄以上の重たい金属核種の生成過程は基本的には核反応で生じた中性子がより重い核種に吸収されてウランなどの重金属となり、それが核分裂反応を生じるというものである。(正確には谷口義明「宇宙の誕生と進化」、放送大学出版会p111などを参照)

太陽ができる前の超新星爆発も同様で軽い水素や重水素は中心に残り、現在の太陽となった。それが今から46億年前のことである。宇宙は138億年前にビッグバンで生成されたことになっているので、太陽以前にも太陽のような恒星が現在の太陽付近にあったことは想像できる。

重いウランや金などはその他の惑星になって太陽系を作ったが、特に地球はこれらの重い金属を大量に含むようである。他の惑星も同じかもしれないが詳しいことは分かっていない。

地球自体も内部構造はよくわかていないが、地殻にウランや金を含むことから、超新星爆発における重い金属類を大量に含んでいることは分かっており、半減期45億年のウラン-238や半減期7億年のウラン-235が残っているのは偶然ではない。地球の熱収支の研究から、地球中心では今も核分裂反応が起こっているという論文があるほどである。

ところで、金の製造方法であるが、以上の超新星爆発過程でも生じた金属核種による中性子吸収とそのβ崩壊(電子を発生して一つ上の元素に変換される)を利用するのが現実的である。ほかにもあるかもしれないが、原子炉では大量の中性子を安く発生できるので利用しやすい。

金の材料は安いタングステンである。金は現在1g約2万円だが、
タングステンは1㎏で約80ドル(1gでは約12円)で1700分の1である。
これに原子炉で発生する大量の中性子を照射すればよい。日本の原子炉は超新星や原爆とは異なり核爆発はしないので、大量の中性子を瞬時に発生することはできないが年単位であればそれなりの中性子を発生することができる。

タングステンは例えば以下の核変換チェーンで金に変換される。

タングステン-184→中性子吸収及びβ崩壊→レニウム-185→中性子吸収及びβ崩壊→オスミウム-186→中性子吸収5回及びβ崩壊→イリジウム191→中性子吸収及びβ崩壊→プラチナ-192→中性子吸収5回及びβ崩壊→金-197

中性子吸収が14回ほど必要だが、プラチナなら9回で済む。

ところで、この金の生成率だが、計算上はどの程度だろうか。実際にモンテカルロ計算で現在の実用化原子炉の中性子レベルで核変換の計算を行うと(計算はほぼ無料だが)、軽水炉の燃料内にタングステンを配置し、中性子で5年間照射した場合、オスミウム-190がタングステン-184の約4.4%に相当する量が生成されることが分かっている。

金-197は上記の核変換スキームから推測してオスミウム-190のさらに4%しか生成されないため、装荷したW-184の約0.2%しか生成されない。

これは金とタングステンと価格差約6%の30倍で経済性が成立しないように見えるが、核変換チェーン途中で金が生成される前にレアアースであるレニウムもタングステンの10%レベルで生成される。また本来金より希少な白金も同レベルで生成される。これらをタングステンから金と同様に分離抽出すれば、経済的にも成立すると考えられる。

即ち、自国で希少金属の市場価格を決められる国になることも夢ではない。

老人と海(現代日本版)2025年09月30日 07:07

湘南の海を見に行こうと片瀬海岸に行った。
白髪の老人が、砂に置かれたチェアで一人静かに海を見つめていた。

私も年齢だけは立派な後期高齢者だがあのような様にはならない。

興味を持って声をかけた。
彼はシラス漁船を6隻も所有する船主だった。

海上に浮き沈みする数十人のサーファーが波を待っていたが。その遠浅の海の沖で、彼の所有する船の操業を浜辺から見守っている。

シラス漁は水深3m程度の海上で行うとのことだ。
昔はサーファーとのトラブルもあったが、両者間で協定ができ、今は彼らの存在が漁の邪魔になることはない。

問題は海の高温化だ。

近年はシラスは生育が悪いだけでなく、赤い小エビが混ざる。この小エビは味が良くなるという人もいるが、子供たちのアレルゲンになるので、分離する手間もかかるようになった。

彼の孫も小エビの入ったシラスは食べられない。最近の食品に含まれる添加物を沢山食べているのが原因だろう。

彼は言った。
 「昔の子供は、平気で地面に落ちた食べ物も拾って食べた。それでいろいろな免疫ができてアレルギーなど珍しかった。今の子にアレルギーは多いのは清潔すぎるからだろう。

 温暖化で江の島の磯の海藻がなくなり、アワビや貝もいなくなった。

 アメリカのニュースを見ていると温暖化対策に後ろ向きのようだが、トランプも気が変わるかもしれん。日本の政治家も総裁選びで政局をもてあそんでいるような場合ではないのではない。」

 ヘミングウェイの時代とは異なり、現代の老漁師は海を見つめながら、環境問題や子供たちの将来のことを考えていたのである。